
International Journal of Information Technology and Knowledge Management
January June 2009, Volume 2, No. 1, pp. 115-118

STILL IMAGE COMPRESSION USING EMBEDDED
ZEROTREE WAVELET ENCODING

V. S. Shingate*, T. R. Sontakke** & S. N. Talbar***

This paper proposes a Embedded Zerotree Wavelet Encoding (EZW) for image compression.

Shapiro’s Embedded Zerotree Wavelet encoder or EZW encoder for short [Sha93]. An EZW encoder is an encoder specially
designed to use with wavelet transforms, which explains why it has the word wavelet in its name. The EZW encoder was
originally designed to operate on images (2D-signals) but it can also be used on other dimensional signals. The EZW encoder
is based on progressive encoding to compress an image into a bit stream with increasing accuracy. This means that when
more bits are added to the stream, the decoded image will contain more detail, a property similar to JPEG encoded images. It
is also similar to the representation of a number like Π. Every digit we add increases the accuracy of the number, but we can
stop at any accuracy we like. Progressive encoding is also known as embedded encoding. Coding an image using the EZW
scheme, together with some optimizations results in a remarkably effective image compressor with the property that the
compressed data stream can have any bit rate desired. Any bit rate is only possible if there is information loss somewhere so
that the compressor is lossy. However, lossless compression is also possible with an EZW encoder, but of course with less
spectacular results.

Index Terms: Entropy coding, wavelet based image compression, embedded image coding, zero trees

1. INTRODUCTION

Image compression is becoming ubiquitous in many
application areas as diverse as web browsing, multimedia
database, digital still cameras, printers, and scanners. They
are supported on many different hardware as well as
software platforms such as PCs, Unix Workstations,
embedded systems such as DSPs, and micro-controllers. All
these different applications and appliances impose different
constraints and requirements for the image coding algorithm.
On the other hand, it is highly preferred that one single image
coding algorithm can meet the requirements of the majority
of these applications so that interoperability can be
guaranteed. These conflicting requirements provide a big
challenge for image coding research. In the last a few years,
a lot of progresses have been made in image coding
algorithms, especially with the introduction of wavelet based
methods [1,2,3,4]. However, the majority of the attention
has been paid to improving coding efficiency of the image
compression algorithms. While coding efficiency is an very
important factor in judging an image coding algorithm, even
more important for practical applications, is to evaluate the
balance between coding efficiency, implementation

complexity, and features such as spatial and quality
scalability, progressive transmission, random accesses, and
error resilience. This paper is an attempt in that direction.

A major breakthrough was achieved by Shapiro — J.M.
Shapiro, “Embedded Image Coding using Zerotrees of
Wavelet Coefficients”. IEEE Trans. on Signal Processing
Dec 1993. He realized that there would be correlations
between information about an image at different resolution
levels.

“If the co-efficient of a wavelet at one scale in part of
the image is not significant (i.e. close to zero), then the
higher resolution wavelet coefficients in the same part of
the image are also likely to be insignificant.”

This in turn implies that we should output coefficients
for large scales before coefficients for smaller scales.
Significance is relative to a threshold value T. Shapiro
devised a multi-pass scheme where T is successively halved,
with additional information being output in each pass.

The scanning order in conventional transform codec like
JPEG can be regarded as vertical scanning since it encodes
each coefficient completely before proceeding to the next
coefficient, in both lossy and lossless mode. The Embedded
Zerotree Wavelet (EZW) [2] codes each bit-plane
successively to give an embedding property by horizontal
scanning every bit-plane of the block ’s during scanning
the coefficients in both bit-by-bit and coefficient-by-
coefficient manners. Below discussion explains the zerotree
structure, scanning procedure and Algorithm in detail.

* Senior Lecturer in Electronics Dept, K.B.P. College of Engineering,
Satara. E-Mail: vsshingate@yahoo.co.in

** Principal, S.G.G.S. College of Engg. & Technology, Nanded.
*** Head of Electronics Dept, Babasaheb Ambedkar, Technical

University, Lonere

��� ���������	
�������������	����������	��������

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\24_V S SHINGATE_T R SONTAKKE SN TALBAR

2. The Zerotree

The EZW encoder is based on two important observations:

(1) Natural images in general have a low pass
spectrum. When an image is wavelet transformed
the energy in the subbands decreases as the scale
decreases (low scale means high resolution), so the
wavelet coefficients will, average, be smaller in the
higher subbands than in the lower subbands. This
shows that progressive encoding is a very natural
choice for compressing wavelet transformed
images, since the higher subbands only add detail.

(2) Large wavelet coefficients are more important than
smaller wavelet coefficients.

These two observations are exploited by the EZW encoding
scheme by coding the coefficients in decreasing order, in
several passes. For every pass a threshold is chosen against
which all the coefficients are measured. If a wavelet coefficient
is larger than the threshold it is encoded and removed from
the image, if it is smaller it is left for the next pass.

When all the wavelet coefficients have been visited the
threshold is lowered and the image is scanned again to add
more detail to the already encoded image. This process is
repeated until all the wavelet coefficients have been encoded
completely or another criterion has been satisfied (maximum
bit rate for instance). The trick is now to use the dependency
between the wavelet coefficients across different scales to
efficiently encode large parts of the image, which are below
the current threshold. It is here where the zerotree enters.

Wavelet transform transforms a signal from the time
domain to the joint time-scale domain. This means that the
wavelet coefficients are two-dimensional. If we want to
compress the transformed signal we have to code not only
the coefficient values, but also their position in time. When
the signal is an image then the position in time is better
expressed as the position in space. After wavelet
transforming an image we can represent it using trees
because of the subsampling that is performed in the
transform. A coefficient in a low subband can be thought of
as having four descendants in the next higher subband (see
figure 1). The four descendants each also have four

descendants in the next higher subband and we see a quad-
tree emerge: every root has four leafs.

We can now give a definition of the zerotree. A zerotree
is a quad-tree of which all nodes are equal to or smaller
than the root. The tree is coded with a single symbol and
reconstructed by the decoder as a quad-tree filled with
zeroes. To clutter this definition we have to add that the
root has to be smaller than the threshold against which the
wavelet coefficients are currently being measured.

The EZW encoder exploits the zerotree based on the
observation that wavelet coefficients decrease with scale. It
assumes that there will be a very high probability that all
the coefficients in a quad tree will be smaller than a certain
threshold if the root is smaller than this threshold. If this is
the case then the whole tree can be coded with a single
zerotree symbol. Now if the image is scanned in a predefined
order, going from high scale to low, implicitly many
positions are coded through the use of zerotree symbols.
Of course the zerotree rule will be violated often, but as it
turns out in practice, the probability is still very high in
general. The price to pay is the addition of the zerotree
symbol to our code alphabet.

3. WORKING

Now that we have all the terms defined we can start
compressing. Lets begin with the encoding of the
coefficients in decreasing order.

A very direct approach is to simply transmit the values
of the coefficients in decreasing order, but this is not very
efficient. This way a lot of bits are spend on the coefficient
values and we do not use the fact that we know that the
coefficients are in decreasing order.

A better approach is to use a threshold and only signal
to the decoder if the values are larger or smaller than the
threshold. If we also transmit the threshold to the decoder,
it can reconstruct already quite a lot. To arrive at a perfect
reconstruction we repeat the process after lowering the
threshold, until the threshold has become smaller than the
smallest coefficient we wanted to transmit. We can make
this process much more efficient by subtracting the threshold
from the values that were larger than the threshold. This
results in a bit stream with increasing accuracy and which
can be perfectly reconstructed by the decoder.

If we use a predetermined sequence of thresholds then
we do not have to transmit them to the decoder and thus
save us some bandwidth. If the predetermined sequence is
a sequence of powers of two it is called bitplane coding
since the thresholds in this case correspond to the bits in
the binary representation of the coefficients. EZW encoding
as described in [Sha93] uses this type of coefficient value
encoding.

Figure 1: The Relation between Wavelet Coefficients in
Subbands as Quad Tree

LH1

HL1

HH1

LL

level 3

level 2

level 1

���������
����������	����	
������������ ����� 	����	
 ���

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\24_V S SHINGATE_T R SONTAKKE SN TALBAR

One important thing is however still missing: the
transmission of the coefficient positions. Indeed, without
this information the decoder will not be able to reconstruct
the encoded signal (although it can perfectly reconstruct the
transmitted bit stream). It is in the encoding of the positions
where the efficient encoders are separated from the
inefficient ones. As mentioned before, EZW encoding uses
a predefined scan order to encode the position of the wavelet
coefficients (see figure 2). Through the use of zerotrees
many positions are encoded implicitly. Several scan orders
are possible (see figure 3), as long as the lower subbands
are completely scanned before going on to the higher
subbands. In [Sha93] a raster scan order is used, while in
[Alg95] some other scan orders are mentioned. The scan
order seems to be of some influence of the final compression
result.

Decomposition order = log2 (size (original image)) (1)

(3) Generate wavelet coefficients

(4) Convert wavelet coefficients to matrix format

(5) Encode wavelet coefficients using EZW algorithm
– Morton scan is used for scanning wavelet
coefficients.

(6) Encoding stops when final threshold value is
achieved, the procedure is discussed in below
diagram

Huffman coding algorithm is applied to the ezw bit
stream to achieve the final compressed image.

For reconstruction of the compressed image to obtain
the original image inverse of the above mentioned steps is
applied.

To implement above algorithm we have used – ‘matlab
v6.5 & wavelet toolbox’

Figure 2: The Relations between Wavelet Coefficients in
Different Subbands (Left), How to Scan them (Upper Right)

and the Result of using Zerotree (Lower Right) Symbols (T) in
the Coding Process. An H Means that the Coefficient is Higher

than the Threshold and an L Means that it is Below the
Threshold. the Zerotree Symbol (T) Replaces the Four L’s in

the Lowerleft Part and the L in the Upper Left Part

Figure 3: Scanning Order Using Morton Scan

There are two types of scanning procedures namely

(1) Raster scan

(2) Mortan scan

The difference in approach between the two procedures
is illustrated by the following diagram.

In our implemented method we have used Mortan scan,
which is more accurate and produces standard results.

4. ALGORITHM

(1) Image is read from the file and converted to gray
scale.

(2) Wavelet transform is applied to the gray scaled
image according to the size of image using

5. RESULTS

In the experiment the original image ‘lenna.bmp’ having
size 256 × 256 (65536 Bytes). Firstly original image is

��� ���������	
�������������	����������	��������

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\24_V S SHINGATE_T R SONTAKKE SN TALBAR

Table 1

Image: 1 2 3 4 5

Parameter TH.=0.06 TH.=0.1 TH.=0.13 TH.=0.3 TH.=0.6

Compression 5.57 10.37 21.77 52.19 151.36
Ratio

PSNR 35.55 30.75 26.76 23.18 20.30

Bpp 1.43 0.77 0.36 0.15 0.05

Compression 182.62 102.21 64.59 43.34 35.47
Time

Reconstruction 448.86 272.37 148.89 78.54 37.18
Time

File Size 65240 65240 65240 65240 65240
Original

File Size 11697 6287 2996 1250 431
Compressed

6. CONCLUSION

Implementing Embedded Zerotree Wavelet (EZW) for the
compression of still images, far better results are obtained
as compare to previous methods. This approach utilizes
zerotree structure of wavelet coefficients very effectively,
which results in higher compression ratio and better PSNR
and SNR. Simulation results have proved that the EZW
provides significant performance improvement compared
with previous coders.

References

[1] [Alg95] Algazi, V. R. and R. R. Estes, Analysis based Coding
of Image Transform and Subband Coefficients. Proceedings
of the SPIE, 2564 (1995), 11–21.

[2] [Cre97] Creusere, C. D., A New Method of Robust Image
Compression based on the Embedded Zerotree Wavelet
Algorithm. IEEE Transactions on Image Processing, 6, (10)
(1997), 1436–1442.

[3] [Sha93] Shapiro, J. M., Embedded Image Coding Using
Zerotrees of Wavelet Coefficients. IEEE Transactions on
Signal Processing, 41, (12) (1993), 3445–3462.

applied to the compression program, EZW encoded image
is obtain, which is further compressed using entropy coding.
To reconstruct compressed image, compressed image is
applied to decompression program, by which EZW decoded
image is obtained, which is given to smoothing program to
smoothen EZW decoded image. Compression Ratio, PSNR
and SNR, are obtained for the original and reconstructed
images. Resulted images are shown below.

Results for the image Cameraman.Tif for various
Thresholds is given below:

